If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-96+48=0
We add all the numbers together, and all the variables
16t^2-48=0
a = 16; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·16·(-48)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*16}=\frac{0-32\sqrt{3}}{32} =-\frac{32\sqrt{3}}{32} =-\sqrt{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*16}=\frac{0+32\sqrt{3}}{32} =\frac{32\sqrt{3}}{32} =\sqrt{3} $
| (-20+3x)/x=0 | | 2(p+6)-10=14-2p | | 33x+5x-6=19x-6x+20 | | 28/x=9 | | 7=3+4(5-2x) | | 3x-61=-8(x-2) | | (t+7)/11=5 | | 0.8(x+200)=0.85x-225 | | 5x+3-2x=10+2x-15 | | |15-2x|=5 | | 2(x+2)=39-3x | | 8x+20=6x-8 | | 5+u=-16 | | 50+t=-40 | | -3x-2=-12x+1 | | -1.9x-2.3+3.5=1/3(5x-1)+7 | | 2r-r-1=18 | | -98=3+e | | 5(x-4)(3x+7)=0 | | 4(h+15)=-6 | | z-5=30 | | 24x-5x+13=14x+6x-20 | | 3x+9=-2-8x | | 7h=105 | | 5(4x−5)+3x−1= 2020 | | 0.07x+0-12(x-3)=0.59 | | 45=5t+45t= | | 25=5(w-5)+5w | | 2(2x+4)=(6x-8) | | 44(3x-1)=-6+2(6x+1) | | 10+3w-5+w=25 | | -1+4(6x+3)=1/2(-10x-10)-5 |